148 research outputs found

    Advances in nanomaterials integration in CMOS-based electrochemical sensors: a review

    Get PDF
    The monolithic integration of electrochemical sensors with instrumentation electronics on semiconductor technology is a promising approach to achieve sensor scalability, miniaturization and increased signal to noise ratio. Such an integration requires post-process modification of microchips (or wafers) fabricated in standard semiconductor technology (e.g. CMOS) to develop sensitive and selective sensing electrodes. This review focuses on the post-process fabrication techniques for addition of nanomaterials to the electrode surface, a key component in the construction of electrochemical sensors that has been widely used to achieve surface reactivity and sensitivity. Several CMOS-compatible techniques are summarized and discussed in this review for the deposition of nanomaterials such as gold, platinum, carbon nanotubes, polymers and metal oxide/nitride nanoparticles. These techniques include electroless deposition, electro-chemical deposition, lift-off, micro-spotting, dip-pen lithography, physical adsorption, self-assembly and hydrothermal methods. Finally, the review is concluded and summarized by stating the advantages and disadvantages of these deposition methods

    Application of advanced surface patterning techniques to study cellular behavior

    Get PDF
    Surface manipulation for the fabrication of chemical or topographic micro- and nanopatterns, has been central to the evolution of in vitro biology research. A high variety of surface patterning methods have been implemented in a wide spectrum of applications, including fundamental cell biology studies, development of diagnostic tools, biosensors and drug delivery systems, as well as implant design. Surface engineering has increased our understanding of cell functions such as cell adhesion and cell-cell interaction mechanics, cell proliferation, cell spreading and migration. From a plethora of existing surface engineering techniques, we use standard microcontact printing methods followed by click chemistry to study the role of intercellular contacts in collective cancer cell migration. Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-Cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-Cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration. Despite the remarkable progress in surface engineering technology and its applications, a combination of pattern properties such as stability, precision, specificity, high-throughput outcome and spatiotemporal control is highly desirable but challenging to achieve. Here, we introduce a versatile and high-throughput covalent photo-immobilization technique, comprising a light-dose dependent patterning step and a subsequent functionalization of the pattern via click chemistry. This two-step process is feasible on arbitrary surfaces and allows for generation of sustainable patterns and gradients. The method is validated in different biological systems by patterning adhesive ligands on cell repellent surfaces, thereby constraining the growth and migration of cells to the designated areas. We then implement a sequential photopatterning approach by adding a second switchable pattering step, allowing for spatiotemporal control over two distinct surface patterns. As a proof of concept, we reconstruct the dynamics of the tip/stalk cell switch during angiogenesis. Our results show that the spatiotemporal control provided by our “sequential photopatterning” system is essential for mimicking dynamic biological processes, and that our innovative approach has a great potential for further applications in cell science. In summary, this work introduces two novel and versatile paradigms of surface patterning for studying different aspects of cell behaviour in different cell types. The reliability of both setups is experimentally confirmed, providing new insight into the role of cell-cell contacts during collective cancer cell migration as well as the tip/stalk switch behaviour during angiogenesis

    Surface treatments to modulate bioadhesion: A critical review

    Get PDF
    On account of the recent increase in importance of biological and microbiological adhesion in industries such as healthcare and food manufacturing many researchers are now turning to the study of materials, wettability and adhesion to develop the technology within these industries further. This is highly significant as the stem cell industry alone, for example, is currently worth ÂŁ3.5 million in the United Kingdom (UK) alone. This paper reviews the current state-of-the-art techniques used for surface treatment with regards to modulating biological adhesion including laser surface treatment, plasma treatment, micro/nano printing and lithography, specifically highlighting areas of interest for further consideration by the scientific community. What is more, this review discusses the advantages and disadvantages of the current techniques enabling the assessment of the most attractive means for modulating biological adhesion, taking in to account cost effectiveness, complexity of equipment and capabilities for processing and analysis

    USING CROSS-SECTIONED MULTILAYER POLYMER FILM AND SURFACE MODIFICATION TO FORM CHEMICALLY PATTERNED SUBSTRATES

    Get PDF
    Highly layered structures are important to micro- and nanofabrication technologies for understanding and controlling surface structures through manipulation of chemical and physical interactions. The objective of this work was to develop a new approach to create micro- and nanopatterned surfaces using multilayer polymer films of commercially available and inexpensive polymers instead of inorganic substrates. As an example, linear low density polyethylene (LLDPE) and ethylene-co-acrylic acid copolymer (EAA) were used as alternating inert and reactive polymers, respectively. Thin cross-sections of the multilayer molded sheets were prepared by ultra-microtoming. As a precursor to the multilayer work, surface modification of EAA was conducted to carefully control the chemical functionality on the surface by a variety of methods. Dansyl cadaverine and polyethylene glycol (PEG) derivatives were grafted on the surface of EAA film and in its subsurface region through formation of amides and esters, respectively. First, EAA film was activated with PCl5 and then the acid chloride was reacted with dansyl cadaverine or a PEG derivative. Moreover, two other reaction schemes were developed to covalently graft PEG chains on EAA surfaces. The schemes involved surface grafting of linker molecules l-lysine or polypropyleneamine dendrimer (AM64), with subsequent covalent bonding of PEG chains to the linker molecules. Combining the data from ATR-FTIR, XPS, and contact angle goniometry, it was found that the PEG chains were grafted on the surface of the EAA film and larger surface coverage was achieved when the dendrimer was used as intermediate layer. Research was then conducted on the EAA-LLDPE multilayer cross-sectioned templates. Regionally confined chemical functionality was confirmed by grafting an amine-terminated biotin to the alternating layers of EAA. Subsequently, fluorescently labeled streptavidin selectively adsorbed on the biotin-modified EAA layers. As a further development, polyelectrolyte multilayers (PEM) were adsorbed on the nanopatterned surfaces to significant increase the areal density of reactive groups. Using PAH and PAA as the polyelectrolytes, the EAA nano-stripes were successfully modified by PEM films, forming a nanopatterned template with alternating hydrophilic and hydrophobic regions. This kind of nano-striped surface could serve as a template for many applications, including biomedical, separation, and electronics

    Design of Surface Modifications for Nanoscale Sensor Applications

    Get PDF
    Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges

    The Synthesis and Host-Guest Applications of Synthetic Receptor Molecules

    Get PDF
    Host-guest chemistry involves the complimentary binding between two molecules. Host molecules have been synthesized to bind negative, positive, and neutral molecules such as proteins and enzymes, and have been used as optical sensors, electrochemical sensors, supramolecular catalysts, and in the pharmaceutical industry as anti-cancer agents.1 The field of nanoscience has exploited guest-host interactions to create optical sensors with colloidal gold and Dip-Pen nanolithography technologies. Gold nanoparticles, have been functionalized with DNA, and have been developed as a selective colorimetric detection system, that upon binding turns the solution from a red to blue in color.2 Cyclotriveratrylene (CTV) 1 is a common supramolecular scaffold that has been previously employed in guest-host chemistry, and the construction of CTV involves the cyclic trimerization of veratryl alcohol via the veratryl cation.3 Due to the rigid bowl shaped structure of CTV, CTV has been shown to act as a host molecule for fullerene-C60.4 Lectin binding receptor proteins are a specific class of proteins found in bacteria, viruses, plants, and animals that can bind to complimentary carbohydrates. It is these lectins that are believed to be responsible for cell-cell interactions and the formation of biofilms in pathenogenic bacteria.5 P. aeruginosa is a pathenogenic bacterium, shown to have a high resistance to many antibiotics, which can form biofilms in human lung tissue, causing respiratory tract infections in patients with compromised immune systems.5 I will exploit guest-host interactions to create synthetic supramolecular and carbohydrate receptor molecules to that will be of use as biological sensing devices via self-assembled monolayers on solid surfaces and nanoparticle technologies

    Scanning Probe Investigations of Magnetic Nanoparticles, Protein Binding and the Synthesis of Rare Earth Oxide Nanoparticles Using Nanoscale Lithography

    Get PDF
    Approaches to prepare spatially selective surfaces were developed in this dissertation for constructing assemblies of biomolecules and inorganic materials. Nanoscale surface patterns of organic thin films were prepared using particle lithography combined with organosilane chemistry. Biological and inorganic nanomaterials can be patterned with tailorable periodicities, which can be controlled by selecting the diameter of mesospheres used as surface masks. The surface platforms of well-defined nanopatterns are ideal for high resolution investigations using scanning probe microscopy (SPM). Local measurements of surface properties combined with visualization of the steps of chemical reactions at the molecular level were accomplished. Fundamental studies of the chemical steps for patterning proteins are critical for the integration of biomolecules into miniature biological-electronic devices for protein sensing. Rare earth oxide (REO) nanomaterials have useful properties such as upconversion, catalysis, and magnetism. For commercial applications REO nanomaterials should have well defined sizes and be arranged as surface arrays. Sample characterizations were accomplished with selected modes of SPM. Scanning probe studies can be used to probe the morphological and physical properties of samples, when discrete arrangements of nanomaterials are prepared. Atomic force microscopy (AFM) can be used to analyze many types of samples in ambient and liquid environments. Arrays of protein nanopatterns were fabricated using the spatial selectivity of chemical patterns prepared with particle lithography. The steps for patterning protein and protein binding were visualized with AFM. The protein arrays were tested for the selectivity of binding IgG to evaluate if protein function was retained
    • …
    corecore